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Abstract

This project analyses the strengths and weaknesses
of the NeRF model for 3D reconstruction. It shows that
NeRF works best for small objects and scenes, and that
its performance degrades as the size and complexity of
the scene being modeled increases.

All the tests of NeRF were done us-
ing the original NeRF codebase on GitHub.
Some ancilarly code has been added to
https://github.com/DanielMorton/Pondhawk.

1. Introduction

Neural Radience Fields (NeRF) [6] the the latest in a
series of methods designed to produce novel 3D render-
ings of objects or scenes. Most previous methods have
either used voxels or triangular meshes. More recent
techniques have used CNNs to predict point density or
color. NeRF replaces the CNN with a multilevel per-
ceptron (MLP), a fully connected neural net that pre-
dicts the color viewed by each pixel in a novel camera
view.

Despite being introduced with much hype, NeRF
has some limitations, especially when it comes to re-
constructing scenes. Most of the forward facing scene
images used in testing were inheritted from LLFF, and
adhere to a rigid pattern of image collection. This ar-
ticle will explore what happens when that pattern is
broken. We shall see that, like most models, NeRF is
very dependent on the quality of the input data. While
the basic strategy of NeRF shows promise, and is suc-
cessful in small scale reconstruction, in its current form
it is a very fragile system.

2. Related Work

Traditionally, 3D reconstruction has been done with
Voxels [3] or triangular meshes. More recently, it has
become yet another fertile area for deep learning. Early
work attempted to model 3D images as level sets of
a function approximated by an MLP [1] [7]. Later,
3D occupancy fields [2] , a network that predicts the

probability that any point is occupied by an object,
were developed to reconstruct the shape of an object.
A second network, predicting the texture of the object,
could be used to store data about color.

There are several alternative techniques for 3D ren-
dering. Neural Volumes [4] can construct novel views
of an object that lies entirely within a bounded volume,
similar to NeRF’s 360 reconstructions. Neural Volumes
uses a 3D convolutional network to predict color and
density. Scene representation networks [9] use an MLP
to reprensent each coordinate as a feature vector and
a recurrent network to aggretate the colors along the
ray. Local Light Field Fusion [5] uses a 3D CNN to
predict RGBα for each input view and produces novel
views by composing α’s and blending the images.

3. Background

Neural Radience Fields is the latest in a series of
techniques that represent an object or scene as the
weights of an MLP, a deep neural network composed
entirely of fully connected layers. For these purposes,
an object can be viewed as having two components,
its physical geometry (the location of all its componet
points in space) and the color of each point (a func-
tion of both the intrinsic materials of the object and
the way light reflects off of the object). The model
then needs to have two sets of inputs, a 3D coordi-
nate (x, y, z) specifying a point in the scene, and a two
dimensional direction (θ, φ) (in practiced specified by
the three dimesnional vector d) specifying the direc-
tion from which the point is being viewed. The output
is a three dimensional color vector (r, g, b) and a one
dimensional density vector σ.

This is, of course, not what the eye or cameras sees.
The color registered by each camera pixel is accumu-
lated color picked up along the ray leading to that pixel.
Theoretically, this is expressed as integral over all the
color along the ray, where r(t) is the ray and c and σ
are the color and density functions respectively. The
total color of ray r(t) = o + td is expressed in the
integral below.
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A scene is composed of all the rays that enter a
camera positioned in specific location. If a scene has
height×width pixels, then there will be height×width
values of C computed. The MLP, however, only pre-
dicts c; NeRF needs to estimate C by sampling c as
points along the ray.

The naive method of estimating an integral is to
replace it with a weighted sum of evenly sampled points
along the interval of integration. That would be less
than desirable in this case since most points along the
ray will lie in empty space or behind the surface of
the object and thus contribute nothing. In practice,
along one ray, almost all of the color almost all of the
time will come from one point on the object surface.
Learning where this point is part of the MLP training.
But in order two train the MLP, we need to sample the
points along the rays.

In order to get out of this chicken-and-egg situa-
tion, NeRF uses two models. The first “coarse” model
is trained using an even sample of 64 points along each
ray. The density estimates of this model are then used
to estimated a CDF that is then used to resample
points along the ray (64 or 128 depending of model pa-
rameters) with most points sampled at the regions of
highest density. This new set of points is then used to
train a more accurate “fine” model. Only the outputs
of the fine model are used for prediction but training is
done on both models in order to compute the densities
along the rays.

The training loss is surprisingly simple; merely the
sum mean squared errors of the coarse and the fine
models over all the pixels in the training images. If Ĉc
and Ĉf are the predictions of the coarse and the fine
model, the loss in symbols is

∑
r∈R

∥∥∥C(r)− Ĉc(r)
∥∥∥2 +

∥∥∥C(r)− Ĉf (r)
∥∥∥2

where R is the set of all rays in the training set. But
since the MLPs themselves only produce estimates at
points along the rays, the formula connecting C and c
makes backpropagation that much more complicated.

There is preprocessing that must be done on the
input as well. Although MLPs are know to, theoreti-
cally, be universal approximators, in practice there are
some functions they can approximate better than oth-
ers. One set they do particularly poorly at is sinusoidal
functions. Since the earliest days of digital image pro-
cessing, it has been known that images naturally de-
compose into a Fourier basis. To aid reconstruction,

Figure 1. The architecture of the deep fully connected mod-
els

we want to include these features in the model. Since
MLPs cannot approximate high frequency sinusoids,
but sinusoid functions exist in every standard math
package, we can simply add the sinusoids as inputs.
For each coordinate of each point, the model accepts
as inputs

γ(p) = (p, sin(20πp), cos(20πp), ..., sin(2Lπp), cos(2Lπp)).

The value L = 9 is usually chosen to match the
Nyquest freqency for the image resolution. For higher
resolution images, a larger value could be used. The
same type of embedding is used for the coordinates of
the direction vector d, although a value of L = 3 is
usually considered adequate. The end result is that
the MLP accepts 63 coordinate inpute values and 27
direction input values.

The full MLP consists of eight fully connect layers
taking data from a coordinate input layer. There is a
skip connection from the input layer to the sixth layer.
The output of the eighth layer goes to a softmax layer
that predicts the density contribution of that point.
The eight layer also outputs to a ninth dense layer that,
concatenated with the direction input, feeds into one
more dense layer followed by a dense sigmoid layer that
predicts the color contribution in the given direction.
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Figure 2. The Full NerF Model

All the dense hidden layers have 256 nodes and ReLU
activation except for the final dense layer before the
color output (dense half), which has 128 nodes, and
dense 8, which has a linear activation. Density is only
determined by position; color is determined by position
and direction.

Training is done on batches of individual rays. Each
ray is sampled at 64 points for input for the coarse
model and an additional 64 or 128 points for the fine
model. A single training example consists of 128 or 192
input points and three output point, the (r, g, b) val-
ues. In effect, althoug never constructed explicitly, this
amounts to two siamese networks, one with 64 copies
of the same model the other with 64 or 128 copies of
the same dense MLP.

This can be modeled as one graph in TensorFlow.
See image 4. The origin and direction inputs are the
camera focal point and ray directions for all the rays
associated with all the images. This data is extracted
from the camera poses. The coarse and fine sampling
layers produce point sampling along each ray. The
trigonometric embedding were described above. The
layers labeled z val and u are ancilarly inputs needed
to make the random ray sampling word. The concate-
nate layers combine the outputs of the points sampled
along the rays. And the RGB layers do the integral
approximation.

Apart from the two functional layers, none of the
layers in this model have any training parameters. It
is possible to show that this is exactly the same net-
work architecture, in explicit form, as that used in the
NeRF codebase in implicit form. The NeRF codebase
comes with two sample objects, a lego earth mover and
a large potted plant labeled fern (in truth, a palm tree,
but we’ll ignore that for now.) Along with the training
images, these samples come with training parameters
and model weights. Since most of my work up to that
point had involved forward facing scenes, I decided to

look at the “fern”. Using the parameters, 64 extra sam-
pling points for the fine layers, a small amount of noise
in the random point sampling to make the model more
robust, and some normalization of the camera poses
for regularity, as well as the model weights inserted to
the model shown in 4, I confirmed that 4 produced the
same outputs for both the coarse and fine predictions
at the implicit model in the NeRF GitHub repositiory.
From this I could conclude that both models performed
identical forward propogation.

Unfortunately, the explicit model in Tensorflow
Keras proved impossible to train. Possibly because it is
a 192-fold siamese network, backpropogation turned all
weights and biases to nan. Reconfiguring the network,
dropping the, already low, learning rate, and even gra-
dient clipping were to no avail.

All subsequent experients were done using the orig-
inal NeRF code.

4. Approach

“He that breaks a thing to find out what it is has
left the path of wisdom.” Perhaps Gandalf was right.
Nonetheless, in order to understand NeRF well enough
to work with it, I had to break it. The first task was
to understand the input data. NeRF requires two sets
of data, a collection of images of an object or scene
and the relatvie camera poses between these images.
Collecting images is easy, one just needs a camera and
all phones have those these days. I took some images
with my Pixel but most were taken with a Nikon 3300
DSLR camera.

Compiling the relative camera poses is a bit harder.
Basic Structure from Motion algorithms are simple
enough mathematically, but require a certain amount
of tuning, especially at scale. NeRF does nothing to
compute poses, relying on the COLMAP [8] software
also used by LLFF. COLMAP produces sparse repre-
sentations of 3D scenes using standard SfM algorithms
in a three stage process. First, SIFT features are ex-
tracted. The second, and frequently longest, stage is
feature matching. Exhaustive matching (all pairs of
images are compared) is O(N2) but is the most thor-
ough option and not prohibitive for the types of image
collections used by NeRF. (Budget and hour for 100 im-
ages, and this step only needs to be done once.) The
final sparse reconstruction step computes the camera
poses. This last step is very sensitive to initial condi-
tions, and in extreme cases will not produce a sparse
reconstruction. After much experimenting I fould that
setting the parameters multiple models to true (i.e.
don’t assume the same intrinsic camera matrix for all
images) and minimum initial triangulation angle at 4
worked in most situations.
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Once both sets of inputs are available, then it is time
to train the model. Since the purpose of this exercise
is to test how well NeRF can reconstruct more compli-
cated scenes than those shown in the paper, I saw no
reason to tamper with the default parameters. The ini-
tial learning rate is kept at 5×10−4 decaying to 5×10−5

over 250K steps. Since 64 extra samples are used for
the fine model in the fern/palm example, I continued
to use 64 samples in my experiments. Early experi-
ments had been done with raw noise std (a parameter
to add randomness to the density values) set to zero,
but this produced strange floaters (components of the
image that detached and seemed to float in space) so I
reverted to the default noise of 1. Since both the phone
and the camera produce fairly high resolution images,
I also kept the default downsample rate of 8. Every
eighth image is reserved for validation.

NeRF reconstructs scenes under two separate cir-
cumstances. The first is forward facing scenes; the
same type LLFF reconstructs. The second is recon-
struction of objects from 360 camera views where the
object can be convienently placed in a 3D coordinate
grid. In both cases, there are some adjustments that
have to be made to the camera poses so that the model
can treat the scene or object as being within certain
bounds. The two situations have different adjustments;
in both cases it is wise to the defaults. The one time I
tried training NeRF on a 360 scene with forward facing
defaults the result was surrealist art.

Since the goal of the project is to stress test NeRF
it seemed natural to try training models of large com-
plicated scenes. Since the 360 reconstructions had only
been tried on small objects, I focused on forward scene
examples. The results never looked as good as those
presented in NeRF, so I began to scale back to smaller
scenes. That had mixed success, which led to reexami-
nation of the poses used in the original NeRF paper. In
every case, the camera poses were in a tight grid pat-
tern and all facing forward. Crucially, the main part
of the scene was in every picture.

5. Experiments

This led to a natural two part experiment to evalu-
ate NeRF’s abillity to represent large complex scenes.
My outside porch 3 has exactly the sort of repeating
rail pattern that makes for good computer vision test
fodder. I took a collection of 180 pictures of the porch
from every angle and distance I could get an unob-
structed view. If sheer volume of images were enough
to get a good 3D reconstructions, I could not possibly
have done better.

The second part was to take pictures of just one
subset of the porch, the railling to the right of the main

Figure 3. Side Porch

Figure 4. Camera Positions from Porch Photograpy

Figure 5. Twenty Image Camera poses

stairs. This I further chopped into two blocks, the parts
left and right of the flower box. I took a 5 by 4 5 grid of
images of the left side, and a 5 by 8 6 grid of image of
both sides (with another three pictures added for good
measure.) NeRF models were constructed for the 180
picture set, the 5 by 4 grid, and a combination of the 5
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Figure 6. Sixty-Three Image Camera poses

Table 1. Porch Test Mean and SD
PSNR MS-SSIM

20 Image Porch 18.40± 2.14 0.8512± 0.0628
63 Image Porch 15.63± 2.58 0.6396± 0.1511
180 Image Porch 15.47± 1.54 0.6112± 0.1423

by 4 and the 5 by 8 grids (making the third image set
a strict superset of the second.)

The overall results were the exact opposite of what
one might have expected. The 20 image collection had
the best reconstruction results, with a PSNR of 18.39
and an MS-SSIM of 0.8512 on the validation set. The
63 image superset had PSNR of 15.63 and MS-SSIM of
0.6396. The bigger surprise came with the complex 180
image set; it performed only slightly worse on it’s val-
idation set than the 63 image set, with PSNR of 15.49
and MS-SSIM of 0.6112. Although NeRF’s ability to
reconstruct a scene clearly degrades as the image col-
lection becomes more complex, the dividing line is not
where the arangement of camera poses becomes more
complex. In the 20 picture case, the intersection of the
images is non-empty. In both the 63 and 180 image
examples, there is no point that appears in all the im-
ages. It seems likely that this dividing line is where
NeRF stops having a region common to all the input
images.

The difference in reconstruction quality becomes
painfully obvious when comparing the same scene re-
constructed by both models. The model constructed on
20 images produces an almost perfect reconstruction 7
of the porch, only struggling with the twigs of the bush
underneath. A casual observer could easily mistake it
for a real photograph. The model constructed from the
larger image set produces something not dissimilar to
a low dimensional PCA approximation 8.

A comparable reconstruction from the 180 image re-
construction looks like a photo taken from a moving
vehicle 9, failing to reconstruct the bush in front of the

Figure 7. 20 Image Porch Reconstruction

Figure 8. 63 Image Camera Reconstruction

Figure 9. 180 Image Camera Reconstruction

porch at all. And that’s one of the better scenes.
A second, albieit simpler, experient produced the

same results. A full bookshelf provides a surprisingly
complex scene in a small environment. A simple way
to test the hypothesis that NeRF only does well when
the training set has a non-empty intersection would
be to use NeRF to model one shelf, and then produce
a second model of two shelves (one above the other)
where the images where each image is of one shelf. A
row of images between the two shelfs is added to ensure
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Figure 10. One Shelf Camera poses

Figure 11. One Shelf Camera poses

Table 2. Shelf Test Mean and SD
PSNR MS-SSIM

One Shelf 23.50± 1.52 0.910± 0.0244
Two Shelf 22.31± 1.65 0.8281± 0.0479

NeRF doesn’t try to model two disconneted regions.

The one shelf reconstruction 10 used 68 images and
the two shelf reconstruction ?? used 64. All were taken
at close range to avoid any other houehold objects con-
fusing the model. The results were as expected. The
one shelf reconstruction had test set PSNR of 23.50 and
MS-SSIM of 0.9102 while the two shelf reconstruction
had PSNR of 22.31 and MS-SSIM of 0.8281. It’s worth
noting that the worse reconstruction in this case has
MS-SSIM score closer to the best porch reconstruction.
Since this was an inside experiment and the images
were taken at closer range, we can expect reconstruc-
tions to have better scores regardless of other factors.

Once again, the difference in reconstruction quality
becomes apparent when looking at similar scenes. The
one shelf model can even reconstruct iridescent surfaces
12 and fairly small typefaces 13with good success. The
two shelf model struggles with both 14 15.

The two shelf set of book images provided an oppor-
tunity to test how fine the “fine” model in the NeRF
reconstruction needed to be. Aside from the usual 128
point fine model, I also tested a 192 point fine model
(128 extra points sampled along each ray.) The re-
sults were surprising, both the PSNR and MS-SSIM

Figure 12. Iridescence Reconstruction on One Shelf

Figure 13. Fine Typeface Reconstruction on One Shelf

Figure 14. Iridescence )or lack thereof) Reconstruction on
Two Shelf

measurements were slightly lower for the finer model,
dropping to 22.25 and 0.8207 respectively.

It is worth making a note about training and val-
idation at this point. The NeRF paper claims that
between 100K − 300K iterations are normally needed
to train a NeRF model. While it is true that training
error will continue to improve for that period, it is of-
ten the case that the test error will plateau at around
50K or even 20K iterations 16 17. Conveniently, these
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Figure 15. Typeface Reconstruction on two Shelf

Figure 16. Two Shelf Validation Convergence

Figure 17. 63 Image Porch Validation Convergence

are ususally the examples where the reconstruction is
performing poorly; if it looks like the test PSNR has
leveled off early, there is a good chance the model will
not perform well.

Although most of my work was with forward facing
scenes, I did have one successful 360 reconstruction.
There was no experiment here in the sense that I was
not comparing reconstruction settings, but there are
a few interesting observations. In order to make an
accurate reconstruction, I needed to take a number of
pictures, 80 in all, in a series of arcs around the ob-
ject; in this case a bark butter bird feeded. This is

Figure 18. Feeder Good

Figure 19. Feeder Bad

a fairly small object, which ment the reconstruction
was quite good, but the evaluation metrics had much
higher standard deviations than those for the forward
facing scenes. PSNR had a mean of 23.88 but with an
SD of 8.18, while MS-SSIM had a decent 0.8281 mean,
the SD was nearly a quarter of that at 0.1958. Some,
but not all, of that variation may come from outside
elements that intrude on the scene from some angles
19.

6. Conclusions

While NeRF performs well in a limited range of
range of reconstructions, its value as a general pur-
pose tool remains limited. It is not difficult to break.
The good news is that the number of images is not par-
ticularly relevant; NeRF can reconstruct a scene from
a little as twenty. The method of image collection is
important. If an object or scene is to be the subject of
a NeRF reconstuction, images need to be collected in
a very methodical way.

From a computational standpoint, it appears that 64
extra sampling points for the fine model are adequate,
and anything more may cause overfitting. It would be
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worthwhile to do side-by-side comparisions of the two
models with other objects.

A possible follow-up to the porch experiments would
be to take a fourth set of images the full right side of
the porch, but from a slightly greater distance. That
way, the full right side of the porch could be modeled by
images that have a nonempty intersection. Most, likely
this would produce a reconstruction with an accuracy
more in line with the 20 image porch model. It would
also be interesting to see if adding the 63 closer range
porch images has any effect on the reconstruction.

At one point I had ambitions of trying to reconstruct
a car using NeRF and 360 collected images. Now I
think that either the number of images would be pro-
hibitive or that the images would have to be taken from
an impractical distance. For the moment, it seems 360
reconstructions with NeRF are best left to small ob-
jects.

A common pattern among the poorly reconstructed
images is their resemblance to low dimensional PCA or
DCT reconstructions. This may be a factor of the num-
ber of nodes in each fully connected layer. Doubling the
number of nodes, 512 instead of 256, may result is a
higher resolution approximation of large scenes.
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